
7 D-8167 40" ORBITAL COMPACTNESS FM ASYMPTOTIC BEHAVIOR OF 1/1
NONLINEAR PARABOLIC SYSTEM..(U) WISCONSIN UNIV-MADISON
MATHEMATICS RESEARCH CENTER REDLINOER JAN at1/1 M

UNCLASSIFIED MRC-TSR-29 DAG299- B B-C-BB4F/G±/

EOEhhhhhE



*1r w

111111.2 1111 . 11111.6

12...

* 
%

_L25 I..

. . . . . . . . . . . . . . . . . . . . . . .
. .7.

k~lC~nr.P' CHP.



1MRIC 
Technical 

Suary 
Report 

#2897
AIM

ORBITAL COM4PACTNESS AMD ASYM4PTOTIC

BEHAVIOR OF NONLINEAR PARABOLIC SYSTEMS

(0 WITH FUMCTIONALS

00 -

Reinhard Redlinger

Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street

Madison, Wisconsin 53705 D EC

January 1986 MY23 06

(Received November 22, 1985)

LA_
Approved for public release
Distribution unlimited

Sponsored by

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park
North Carolina 27709



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

ORBITAL COMPACTNESS AND ASYMPTOTIC BEHAVIOR
OF NONLINEAR PARABOLIC SYSTEMS WITH FUNCTIONALS

Reinhard Redlinger

Technical Summary Report #2897

January 1986

ABSTRACT

Weakly coupled semilinear parabolic systems of the form - A(x)u = g(u t )

with homogeneous boundary conditions are studied. The nonlinear function

g C( (-r,O] x n, n ) + Rn is assumed to be locally Lipschitz continuous with

r ) 0 a given real number and n C le a bounded domain, u = du/dt, ut for

t ) 0 is defined by u = u(t+O,E), -r 4 a 4 0, E c n and A is a

uniformly elliptic second order diagonal operator. Let u be a bounded

classical solution. We first establish precompactness results for the orbit

of u in several function spaces. Using these results and assuming that a

Liapunov function V for the corresponding ordinary functional differential

equation -= g(zt) is known, we then show under some general conditions that
.

the limit set w + (as t + -) of u consists of spatially homogeneous

functions only. Moreover, W+ is invariant with respect to z = g(zt) and

V 0 on w+. The theory is illustrated with an example.

AMS (MOS) Subject Classifications: 35R10, 34G20
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SIGNIFICANCE AND EXPLANATION

)In recent years, reaction-diffusion systems have become widely used as

models in biology, chemistry and population dynamics. %

A major point of interest is the long-time behavior of the solutions.

For systems governed by ordinary differential equations the asymptotic so

behavior is usually investigated using Liapunov functionals in conjunction

with an invariance principle. The purpose of this paper is to extend these

methods to a general class of distributed systems that admit possible

hysteresis effects in the reaction mechanism. , / .
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ORBITAL COMPACTNESS AND ASYMPTOTIC BEHAVIOR
OF NONLINEAR PARABOLIC SYSTEMS WITH FtJWCTIONALS

Reinhard Redlinger

0. Introduction

Let J - (-r,0] with r > 0 and P. a bounded domain in IP with smooth boundary

afl. We will consider in this paper weakly coupled nonlinear parabolic systems of the

form (k - 1,2,...,n) .%.

kk -'a

A k(x)u k  g(u) in D - 10,-) x n

(0.1) B (x)u o on 1o,=) x 3n .'

u . 4 in JX n ,a

where u (u ...,u n), k auk/3t , g : C = C(J x n, n ) + Tn  is a given function, v 6 C,

the Ak are uniformly elliptic operators of second order and the Sk linear boundary
operators. As usually, ut c C for t > 0 is defined by ut(a,E) - u(t+0,E), a C J,

C . We say that u is a classical solution of (0.1), if the function u together

with its derivatives appearing in (0.1) is continuous in D such that equations (0.1)

are identically satisfied. A bounded classical solution u is a classical solution withd.

sup{Iu(t,x)! -r -( t, x c 11 <.

In the first part of the present paper we will prove compactness results for the orbit

r(u) = {ut  t > 01 < C of a bounded classical solution u of (0.1) in various function

spaces. We give, in particular, sufficient conditions on A, B, g and T under which

r(u) is relatively compact in the space

Y - {v c C Div c C, DiD V(0,.) c C('F,Rn ) for all i,

endowed with the norm

m m
i,=1 i,j=1

Iv Il o o Il + ID n~ v 1. + IDiD v(O ,°.)N . -2

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and Wissenschafts-
ausschuss der NATO under DAAD - Grant No. 300/402/502/6.
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* !"N denoting the supremum norm and Di the partial derivative a/ax i . We deduce these

results from more general theorems valid for abstract nonlinear evolution equations of the

form
4 orAu g(t,u) , t > 0

(0.2)

u0

where A is the infinitesimal generator of a strongly continuous analytic semigroup of

linear operators in a Banach space X.

With (0.1) one can associate the system of ordinary functional differential equations
zg'(zt) , t,0 , I

(0.3) 
t

z in J

with q the restriction of q to the subspace Ch of spatially homogeneous functions i, 4.1
j in C. Assuming that a Liapunov function V for (0.3) is known and using the compactness

results of the first part we show in section 3 that under some general conditions on the

system (0.1) the limit set

w(u) = {V C: There exists tk+ with ut + v in C"
k

of a bounded classical solution u of (0.1) consists of spatially homogeneous functions

only. Moreover, w(u) is contained in the largest invariant subset (with respect to the

system (0.3)) of the set

s ={ ch  v( J) =  } '-"

In other words, the asymptotic behavior of solutions to (0.1) is completely determined by

*" the behavior of the solutions z of (0.3). For systems (0.1) without functionals related

"., results have been proven in [91 (see also [81 and the literature cited in these papers). -.

The necessary compactness result in this case was established in [10]. We conclude the

paper by treating in detail the example (n=l)

u = Au a(s-t)lu(s,x)l -1u(s,x)4s in (0,-) x ,
t-r

(0.4)

=u/IN - 0 on (0,-) x ,

". where N is the outer normal and a c C2 () is a given nonnegative, convex function -

with a(-r) = 0. We show that our results are applicable to (0.4) for all £ ) I in case

n= 1,2 and for 1 t < (m+2)/(m-2) otherwise.,%- '%

-2- %
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1. The abstract equation.

Let X be a Banach space with norm 1.1 and let A D(A) C X be a closed, linear

operator in X with domain of definition D(A) dense in X. Throughout this section we

will assume that ."'-'

(1) I(A + x) I11 ( M(j)I + 1) for all Re A > 0

with some constant M > 0 independent of X (the norm in LX), the space of bounded

linear operators from X to X, is also denoted by !.1). It follows from (1) that -A

is the infinitesimal generator of an analytic semigroup {e .  t ) 01 in X and that -

there are constants C,6 > 0 such that (I denotes the identity operator)

-At -6t -At - 6~t
(2) Re 1 4 Ce , NAe- I Ct e for t > 0

(3) 1(eAh - I)A- 1 I Ch for h > 0

(cf. [13, Sect. i)]. This permits us to define the fractional power AO of A for any

a > 0 by the integral
-a 1 -As a-1- w e - do .;-

where r denotes the gamma function. The operators A- 0 are one-to-one and elements of

L(X). Hence it is reasonable to define A (A - I . Aa is a closed, densely defined

linear operator in X. With the norm 1x NA a x, X = D(A ) becomes a Banach space. " -

Set A= I. Then, for any a < 8 < Y, an inequality of moments

(4) 1X- 4 C. I X l xf X' ' li x ' ye
'6 asy Y a Y\ -

with X = (R-a)/(y-a) is valid. The constant C.B. is independent of x. For proofs,

see (13, l.c.j.

Let r ) 0 a real number and set 3 L r,0]. Denote by Z = C(J,X) the space of

all continuous functions froms J to X with norm

=Nz  sup{(s), : s C J} < .
'

If b ) 0 and u c C([-r,b],X), then for 0 4 t 4 b, u t C Z is defined by ut(s)

u(t+s), s c 3. Let y : [O,m) x Z * X be a given function. In this section we will study

continuity properties and boundedness in the spaces X., 0 < a < 1, of solutions u of

the initial value problem

= .=,

-3- P
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+ AU - gt,u ) t > 0

(5)
UO 9Z 

where, = du/dt. A strong solution u of (5) is a function u c C(J U R+,X), whose

restriction to - 0,-) lies in C(+,D(A)) C CI( 4,X), such that (5) is identically

satisfied. A mild solution of (5) is a function u c C(J U 4+,X) with u0 - v satisfying

the integral equation

+ -A(t-s)g(su)ds t ) 0 .

.If aupu(t), : t u) -r < -, the solution is said to be bounded.

Let be fixed bounded mild solution of (5) and set f(t) g(t,ut) for t ) 0.

Assume that there are constants X, P > 0 such that

.. (7a) P(t)i 4 P for t P 0

(7b) Rf(t) - f(s)l ( K(jt-s + lut - u l) for t,s ) 0

For example, (7) holds if for any bounded set B C Z, the function g is (globally)

Lipschitz continuous and bounded on [0,-) x B. %'.

Proposition 1. Let u be a bounded mild solution of (5), for which (7) is satisfied.

- Then, to any 0 4 a < 1 with T(0) c X,, there is a constant C1 = C1 (a) such that

Nult)R 4 C1  for all t 0'%

, Proof. Using (4), by (2), (7a) we get

lu(t)l r CIP(0}) + ft C0 1C(t-s) -0e (t-s) P ds 4 const.

. with a constant independent of t.

Proposition 2. Let u be a bounded strong solution of (5) with Lipschitz continuous

initial value v c C(J,X) and v(0) C D(A). Assume (7). Then

lu(t+h) - u(t)l 4 C2 h for all t > 0, 0 < h 1

- with a constant C2  independent of t, h.

Before proving proposition 2 we first state an elementary lemma. For convenience, the

following notation is introduced: Let a, b, T (0,-) + R with b(s) > 0, 0 C T(s) 4 S

-4-%
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a.? V.- I- W.- WE Wt -. -' V-. -'. h-- -= -

for.a> 0 and b cL to0CO.). For y e CC-r,-) define Sy (0,-) + R by

(Sy)(t) - a(t) +*~ t ~ts Iy5 Ids , t > 0

y~Ttt bSyt-s)

y~t - Sy)t)< z(t) -(Sz)tt) for t > 0 .4

y(t) < Z(t) for t cJ

Then y(t) < z(t) for all t > -r.

Proof. Since y, z are continuous and b is locally integrable, the functions Sy and

Sz are well defined for t > 0. Suppose the assertion is false and let a = infft ;0 -r

Y(t) -Z(t)}. Thus y(or) - Z(G), which implies a > 0, and y(t) < z(t) for -r 4 t < cr

But then at t - a,

z y -Sy +Sy < z -Sz +Sy < z -Sz +Sz=

a contradiction.

Proof of proposition 2. For any 0 4 T 4 t, h > 0 we have

(8)u(t+h) - u~t) = 2~ +I 13 + 4 *

where

1 (e - IVe 9(0) -h -t~-

2 rjT+h e-A(t+h-s) f(s)ds

13 J (e - I)e -ts)f(s)ds

I4 ( t e~~ts (f(s+h) -f(s))ds

By (2), (3) and (7a) we have

fl 41eAh -)_1 1e-At I1fO 4C2 lp)R

111 fT+h C p e(t+h5S)d CPh

and (assuninq T < t)

* '
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21 1h::: 6: (t-t) 2IXO1T21

satifiestheinequality

Y(t) 4 Clh + ft Ce-S(t-5) K(h + ly 1)ds

-C C 3h + T~ CKe Id fo 6 (t-s)lyld for .*

where Ci. C3  are constants and ly sI = sup{y(s+a) :a C JI.

Our hypotheses imply that there is a constant C4 > 0, independent of h 4 1, with

y(t) 4 C4 h for t fJ

Let

z(t) = Mh for t> -r

where M > C4  is a constant. The assertion will follow from lemma 3, provided we can

m choose M such that

Mh >C h + ft C~e 6(- Mh ds for all t>O0

Rut this is equivalent to

M > C 3 + CKM A(Il-e~t for t)>0

Hence it suffices to choose M > max(C 4 12C 3 ).

Proposition 4. Under the hypotheses of proposition 2 there is to any 0 4 a < I a

constant C~ C (a) such that

lu(t+h) -u(t)I < C h for all t P 0, 0 < h < 1

j -6-
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Proof. Choose T - 0 in (8). Then 13 - 0 and

II I ft const.(t-s)-le-6(t-s ) h do const. h
4 at 0

by proposition 2. Further, using (4) we get

111 1 , II21 4 const. h

Since the constants are independent of t ) 0, 0 < h 4 1, this gives the desired result.

Remark. Let to > 0. Then the same method of proof shows (0 4 a < 1)

Iu(t+h) - u(t)1. -C const. h for t )t 0 > 0, 0 < h 4 1

If u is only supposed to be a bounded mild solution of (5), then instead of proposition 4

we have

Proposition 5. Let u be a bounded mild solution of (5) such that (7) is satisfied.

Assume 0 4 a < P 4 I and v(O) f X.. Then

Nu(t+h) - u(t)I 4 C6 hl a.'6

for all t,h > 0 with a constant C6  independent of t, h.

Proof. In view of proposition 1 we may assume p < 1. Choose T - t in (8). Since

A- F L(X) for any E > 0, we get

1tN 11tA 4 const. h1- p

Also

3 a A0 (e - I)A-4 NA e I P ds

4 const. h I~ ft (ts)p
-c e 6(t - )ds 4 const. h 1- s

0

This proves the assertion.

Proposition 6. Let the hypotheses of proposition 2 be satisfied and assume that A-1 is

compact. Then to any 0 < a < I and any to > 0 there is a constant C7  C7 (c,t 0 ) with

fut)l 4 C for all t > t > 0
ai 7 0

Proof. Let y = (1+a)/2. By the remark following proposition 4 we have

I1u(t4h7 - u(t)I ( const. h for all t ) to, 0 < h < I

-7-
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W:_ W. W. 7-

with a constant independent of t, h. Since A-  for any c > 0 is a compact operator

[4, p. 27] the assertion follows.

For the next proposition we assume that g is globally Lipschitz continuous in its

second argument, i.e. that there is a constant L > 0 such that

(9) Ig(t,* 1 ) - g(t,$2 )1 4 LI$ 1 - 21Z for all t ) 0, *1,*2 f Z OW

Proposition 7. Let u, u denote two mild solutions of (5) with initial values f, a Z

resp. Assume (9). Then for all t ) 0

- (LC-6)t
(i) IUt - ul ( CI - ze in case CL - 6 > 0 ,

w-w
(ii) Et - ul C crp - qr , Iz ,e in case CL - 6 < 0 ,

*where w is the unique positive solution of w + CL e wr =6.

Proof. Define y(t) Ou(t) - u(t)1, t > -r, with lyti = sup{y(t+o) a e J) for t ) 0.

Then

y(t) 4 H@ - ;I for t c J

and
y(t) ce- t tly0 1 + CLe- 6(t-s) Jysds , t > 0

Let t+ = max(0,t). Lemma 3 implies that for any a > 0 we have

i) y(t) < (Cjy 0I + c)e (CL + )t +  t -r

or resp.

(ii) y(t) < (C+a)jy 0Ie,, , t ; -r

Letting C 4 0+ the assertion follows in both cases.

-At -6t

Remark. In the foregoing proof we only made use of the bound Re -A Ce for t ) 0

with 6 not necessarily positive. Hence proposition 7 sharpens corollary 2.3 in [16]

(where it is assumed that C = 1) and proposition 3.2 in 117] (in case a = 0). Note that

the assertions of corollaries 3.7 and 3.8 in [16] immediately follow from proposition 7.

In contrast to [16, Section 3] we do not require g to be autonomous.

-8- 16
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Corollary. To any 0 a < 1, t > 0 with T(O) ; (O) x a there is a constant C8

C8 (CL,t) such that

Iu(t) - UWtI~ C CIqT(0) - (0)I C8 IT ;qI *

Proof. In case CL-6 0 we have

-tASu(t) -U(t)l a Re WO() - ()a

+ ft IAehtS8)I L NU- u I as
0 s sZ

-a-6(t-s) (LC-S)s
1; CIT(O) - (O)f ft C 08 -, LCt IT T Z e ds

Q (LC - ) t
4 COTO0) - T(0)I + r(I-ct)(LC) C e ITa a z

The proof in case CL - < 0 is similar.

-9-
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2. Parabolic systems.

Let a C R be a bounded domain whose boundary an for some 0 < 1 is a (m-l)-

dimensional C2+-manifold such that fQ lies locally on one side of an, cf. (5, J4.4].

Define r0 = J x 0 and let C = C(T0, n) with supremum norm. In this section we will

apply the results of section I to the weakly coupled parabolic system

" (10a) k + L ku
k 

= g k(t,c,u t) in D = [0,-
) 
x Q

(k 1 1,2,...,n), where u = (u
1,....un) : -D x r0 + Rn is a vector valued function,

"u*k au /k t and ut c C for t > 0 is defined by ut(a,E) = u(t+a,E),(0,E) E r0. The

operators Lk are given by

m km,. 
k

=- . aj k WD Dj + I ak Wx)Di ""•

with D. = a/ax • We assume that the coefficient functions aij, ai
a 1 

N

are u-H6lder continuous in 0 and that (k f 1,2,...,n)
m k M' ' 'm ai (xK E x &2 for all E Rm, x 4"

i, jfflf 1=-.

with some positive constant ).

The boundary and initial conditions for (10a) are

(10b) Bkuk - 0 on (0.-) x an

(10c) u = in r0

Here

Bku
k  

bxu uauk/36(k) for k = 1,2,...,n

with = 0 or I and bk O cl+u(an). Also Rk k(x) C C IO(f,Rm) is an outward

pointing, nowhere tangent vector field on aM. In case 6k 0 we assume that bk I

on M and that the compatibility condition of first order is satisfied, i.e. that

Lkqk(Ox) - gk(o,x,q) = 0 on n.

Let g : R x 0 x C + Rn in (10a) be a given function and 0 c C with

C2(- n)
T(0) E C2(P,R

n ) in (10c). Note that Bk1 k(0 ) = 0 on an by (10b).

A classical solution u of (10) is a function u c C(r0 U D,R
n ) whose restriction to

1,2 - n..
D lies in CI(o,Rn), i.e. whose components are continuously differentiable in D,

Se-10- ,, .
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twice with respect to x and once with respect to t, such that equations (10) are

identically satisfied. A bounded classical solution u of (10) is a classical solution

with sup{lu(t,x)l • (t,x) c ro t -.6 < %6N.

Let X = LP(0,Rn), where 1 < p < is fixed but arbitrary. For sufficiently large ..

d > 0, the operator A : D(A) + X defined by

Au - (LIu ,...,Lnun ) + du

with

D(A) - {v C W2' (,R) BkVk _ 0 on a3 for all ki

satisfies the assumptions on A in section 1, cf. (2, 11.19]. Let u be a fixed bounded

classical solution of (10) such that:

For some p0 > m, the function f(t) - g(t,.,u t) : + X =

(H1 )

PO (fltn) satisfies (7)

Then, by propositions 1 and 5 there are constants C1  C1 (a), C6 = C6(c,p) such that

Iu(t)I 4 C1 fIu(t) - u(s)I s C61t-s
- ".

for all t,s ) 0, 0 ( a < p ( 1. But

(11) C (P,R for 0 < X < 2a - m/p

with continuous imbedding, cf. [4, Thm. 1.6.1]. Hence, defining "0 = 1-m/p0 we see that

for any 0 < v < V0

(12) u(t,) a C (F,Rn ) for all t ) 0

with uniformly bounded norm. Moreover, for any x C 0 we have (i = 1,2,...,m)

V + n v/2 + n
(13) u(,x) L C (R R ), D iu(,x) f C (R R.

where again 0 < v < v0  is arbitrary, with H8lder norms bounded uniformly in x.

For 0 ( V £ I define

Y = {v C C0' IT0,Rn) : Uv( < '}

with

_,1_

, ' % %

.. .. ." [ --_ _ _ ._2 . .. . . . -''-- -.- .-. "- : . , ., ,:•., " .'. ._. ',.". - ; .. -: :, ,:: '. :' ,"c .- '--_1-1-'-;-



L" ~ .''

lVI JvI. + (vX + (vt

+ L V.+ Vx E iV] v/2, t

where, for c cC and 0 ( a 4 1,

iS,-= sup{Ii$1(,I : (o, 1 ro)

C.C
flt'n) !%J I&rl teJ

[$1 = sup{I*(t. 1 - *(t.,1 R -n10a  t j, J. ' n ,

M] at - sup{I*(t,A) - *(s,U1 It-e 5
- = : : & , t Y' s C J)

Since for 0 4 v < p C 1, Y is compactly embedded in Yv, it follows from (12), (13)

that the orbit r(u) = {u : t ) 0) of a bounded classical solution u of (10) is

relatively compact in YV for any 0 C v < v 0 provided q - u0 e Y. for some p > v.

Further, if 9 is sufficiently smooth, say q C Y1, then proposition 6 givesV- n.

(14) u(t, ) . C 'I,, ) for all t ) t > 0 :'
0

with arbitrary 0 C v < v0 , to > 0. The H8der norms are bounded uniformly in x. Write

(10a,b) as an uncoupled system of linear elliptic equations

Lkuk - hk(xit) in n'

(15)4

Bku = 0 on M-

where hk(x;t) = gk(t,xut) ; k depends on t as a parameter. Suppose that g has the

following property:

(H2 ) If * C Y for some 0 < v < I then, for any fixed
* V

t ) 0, the function h(x) = g(t,x,*) is 0-H81der

continuous in x c f with p = p(v), the P-H8ider

norm of h depending only on v and 1*1 (V)"

Then, by (14) and (H2 ) the functions h(xit), t ) to  are W-H1lder continuous in x,

uniformly with respect to t, for some 0 < w < 1. Hence, by the Schaunder estimates

U(t,') f C 2+w(,R7) for all t ) to > 0 with uniformly bounded norm, where w = min(u,w)

(cf. 16, Chap. 31).

For 0 C v, 0 C I let

-12- 2
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" (v C Y I v(O,.) C C2( Of ) , 'v.,,) <"

where

lv - lv ) + ID 3D Dv1. + suP{I1~1 D vC0,g) - D D v(0,n)I JE-n1-0 I E 0 n Cfl

Then, ru(u) ={ut  t ) t f for any T > 0 is relatively compact in fvO for all

0 4 V < v0, 0 ( 0 < Z. We summarize our results in two theorems.

Theorem S. Let u be a bounded classical solution of (10) such that (R1 ) is fulfilled.

Assume that the initial value T c C with T(0,*) c C2(f,Rn ) satisfies v c Y for some

any 0 4 v < min(P,v0 ).

Theorem 9. Let u be a bounded classical solution of (10) satisfying (HI), (H2). Assume -'..

c Y, with 9(0, o ) C C2(Offn). Then, ry(u) = {ut : t ; Ti is relatively compact in

Yv,a for any 0 4 V < V0 , 0 4 0 < Z, where T > 0 is arbitrary.

Remarks: a) Under the hypotheses of theorem 8, r,(u) for T ) r is relatively compact

in Y, for any 0 4 v < v0 . This is true even without the assumption 4 c Y." Similarly,

if the assumption T c Y1 in theorem 9 is replaced by I e Lip (J, C(0,Rn)), then the

assertion remains valid for T P r. Conversely, suppose that under the hypotheses of

theorem 9 the function k(t,x) - g(t,x,ut ) is an element of C 10,t0o] x I ?,Rn ) for

some to > 0 (see [51 for definition of this space). Then, by [5, Sect. 4.51 it follows

that T - 0 can be admitted in theorem 9.

B) Let u be a bounded classical solution of (10) and assume: For any fixed t ) 0 the

function q(t,.,ut) : i K'P is measurable, and the set {g(t,x,ut ) • (t,x) C 31 is "

bounded. Then the function f(t) - g(t,,u t ) satisfies (7a) in X LP(n,Rn) for any

P0 > I and the same is true for (7b) provided this inequality holds in X - L 0 (M,R n ) for

some p0 
) 1. Hence, in this case we can admit v0 - I in the above considerations.

,Y) Some simple examples for functionals that can be treated by the above method would be

-13-
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g(t,,') ~*(-r,x), *(O,x)*(-r,x)

f *20Ed and

fO h(s)V ',x)ds with h C L I W

On the other hand, there are functionals that do not fall within the scope of the LP-theory

developed above, as the example

(16) g(t,x,*) - *(Q,xo) , x0 c f fixed

shows. However, (16) can be admitted, if we choose X - Xc - C(,R) with supremum norm

and define the operator A. D(AC) C XC + XC by ACv - Av, v C D(AC ) with

D(A ) - {v f X v C w 
2

,q(fn), Av C X

8kvk _ 0 on a for all k)

where q > m is a fixed, but arbitrary real number. By [141, [15] Inequality (16) is then

satisfied and from Xc C X = L(,R n ) and D(Ac) C D(A) for any 1 4 p 4 q it follows

that MAO) C D(A8 ) for all 0 4 0 < a 4 1. Hence, theorems 8 and 9 can be proved as

above (with v 0 = 1 and, of course, X replaced by Xc in (Hj)), provided D(hc) is

dense in Xc . But this is true only, if 6k  I in (10b) for all k. In general, we have

to replace Xc by

X ( C Xc : v= 0 on an , if ik - 0 in (10b))

which in turn implies an additional condition on the nonlinearity g in (10a), namely:

For any k with =
k  0 in (10b) we have

gk(t,x,ut) - 0 for all t ) 0, x E an,

u denoting a bounded classical solution of (10).

In each concrete case, using (10b) this condition can be easily verified.

-14-
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3. Asymptotic behavior.

Let Ch - C(J,Rn) the subspace of spatially homogeneous functions in C. We will

assume throughout this section that the nonlinearity g in (10a) is autonomous, i.e.

that g = g(ut). Consider the ordinary functional differential equation

(17a) z = g(z ) for t > 0

(17b) 0 6C h

For any set G C Rn define the subspace CG of C by

CG = {v e C v(r 0 ) C G)

Let V : Ch * R a continuous function and set

V() = h'(v(zh - V(*)) for 0 c Ch  
" -

h...-4

where z - z(t;4) is the solution of (17a) with initial value z= . We say that

V : Ch + R is a Liapunov function for (17) on CGh = CG r' Ch, if V is continuous on

CG, h  and V 0 on CG,h. Let
S - 4 C CG, h  1

and denote by

(18) M the largest set in S which is invariant

with respect to (17).

(A set K C Ch is said to be invariant with respect to (17), if for any c £ K there is a

continuous curve w : R + K with w(0) 4 and zt(w(T)) = w(t+r) for all t > 0, T e R.)

We then have the following assertion [3, 113]:

If V is a Liapunov function on CGh and if z(t;*)

is a bounded solution of (17) with values in G, then

Zt + M as t + .

Let V be a Liapunov function for (17) on CG,h and define W C + R by

(19) W(O) f V('p(.,))dC , ( e CG G|
Let Y, with some 0 < v < 1, 0 < b < be fixed in the sequel ( is the constant

appearing in theorem 9). We introduce the following hypotheses:

% 
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For any 0 c C G( Y satisfying the compatibility

condition of first order the initial value problem (10)

has a unique classical solution u with ut C G

for t 0 0. Moreover, to any T > 0 there is a constant

P, depending only on T and I4I(VG)' such that

lu(tx)j < P for all -r < t 4 T, X C f.

"..-).

(144) There are functions ck £ c(fn,R+), which have only --

isolated zeros, such that

4(9) 11 m h'(W(uh) -W("

h+0+

n %'
T c ck Op(0, E))Vqk(O,E)1 2 + V.&)d

k=1

for all c CG r)y •' u = u(p) denoting the solution of
I Va

(10) with initial value T.

Theorem 10. Let u be a bounded classical solution of (10), where g " g(ut) is

autonomous and locally Lipschitz continuous. Assume that the initial value T of u

satisfies 9 C Lip(J,C(Rn)), 9(0,*) c(MR ) and that ( 1 are fulfilled for

u, g. Let the values of u lie in a set G C 1n  and let there exist a Liapunov

function V for system (17) on CGh. Assume (H3) and (4).

Then ut + M as t + - in C, where 1 is defined by (18), i.e. the asymptotic

behavior of u is uniquely determined by the asymptotic behavior of the solutions z of

the ordinary functional differential equation (16).

Proof. Let

w(u) {v C : There exists tk -+ with Ut + v in C} .

Then

W(u) = r r (u)T>0

€. -
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and by theorem 9 w(u) is nonempty and compact in Y ,o* Let O0 C W(u) be arbitrary.

Then TO C CG n YfV, and the solution u0 - u0 (v0 ) of (10) with initial value V0 is

well defined by (H3 ) (note that V0 satisfies the compatibility conditions). Using a cut- .-

off procedure we see by (HI), (H3 ) and the corollary to proposition 7 that for every t > 0

(assuming u 4P

u u (ut u OP in C (k +-)
k k t()

Hence w(u) is positively invariant. *jA' -

By compactness, there exists a subsequence tn1  such that lim ut - V1 ='.tn,+ nI .j

exists in C G( Y Taking further subsequences and then the diagonal subsequence in the

usual way we find tn. + - such that

u + 4P in C r) as n' + for j 0,1,2 .....

Definea curve w : R + C by

w(t) = ut+j(4j) for t > -j (j = 0,1,2....

This is consistent because

u t+j ( j  - ut+k(Vk ) for t > -j : -k

It follows that w(u) is an invariant set with respect to (10).

By hypothesis (H4 ) the function W(u ) is decreasing for, say, t > r. Since it is

bounded below, W must be constant on w(u). Hence 4(,0) - 0 for any V c w(u). This

implies in particular that ,0 (0,x) is independent of x by the assumptions on the ck

in (H4). But then v0 (t,x) is independent of x for all t c J by the invariance of

w(u). We thus see that w(u) C M, where M is defined by (18), and the proof is

complete.

Remarks: i) If g is globally Lipschitz continuous in C, then sufficient conditions

for (H3 ) to hold can be derived from the results in [11] using (5, Section 4.51. In the

general case of only locally Lipschitz continuous g the crucial point is the derivation

of an a priori bound for Jul (depending of course on NOlv ). To this end, the

following two methods can be used:

-17-
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a) comparison arguments, cf. [111]

8) functional analytic methods (feedback arguments), cf. section 4 and [12].

(ii) Our assumptions on the initial function p are quite strict (compatibility

conditions, smoothness, boundary behavior). It should be clear, however, that the results

of this section are valid under any conditions on V that will insure the solution to be

classical for t > to for some to > 0. We then simply consider the initial boundary r e

value problem (10) on the time interval [t0+r,-).

(iii) The proof of theorem 10 follows [4, Section 4.3]. As in [4, L.c] one can

additionally show that w(u) is connected in C.

(iv) As shown by the example studied in [7], in special cases the ansatz (19) may also be

useful, if g depends on x as well as on ut .
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4. Am example

We consider the initial boundary value problem (n-1) /.

(20a) u - ro a(*) h(u(t~s,x))ds in D

(20b) au/aN -0 on (0,-) x a

(20c) U p in r0

where N denotes the outer normal to af) and

h(z) - jzi -l: , z(ER, for some I >1

The corresponding partial differential equation

V - - lvl'-1v in 0

has been used as a model aquation by several authors, see e.g. ()

Let us assume that the density a in (20a) satisfies:

(21) a C C2 (J) is a nonnegative convex function, with a(-r) -0

(cf. (3, 1141). Following the procedure outlined in section 3 and using the results of (3] 1

we define a function W C + R by

WO.) rV0P(,,))dE C ,

where

2 -r s

with

MW(z - h(z)dz , i.e. H1(z) -1.1'+/(1+1) c R.

we get (for smooth 0)

= -J~ h(,(,~)) ,(0~)Jd +

(22)

V(* = -;(-r) [fl h(4p(s))ds12
2

1(0~s (f0 h(4'(a)da,2
2 -r ss

Hence W is a Liapunov function for (20) satisfying (H14) with G =R. (Note that a o

in J by (21).)

*Now assume that the initial function T in (20c) is such that

-19-
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(23) C c/2,r0) 
with 4(O,-) c C

2
+(5) for some C > 0

Also 3/aN = 0 on an

It then follows from [11, This. 3.1 and 3.31 that for some T > 0 the boundary value -

problem (20) has a unique continuous solution u c C(I-r,T] x E). Moreover, this solution

is classical for t ) 0. We will show next that there is an a priori bound for lul,

independent of T, provided that m < 2(t+1)/(1-1).

In fact, it follows from (22) that W(ut) ( W(u) for any 0 < T 4 t and hence by

continuity

W(ut) 4 W(u0 ) = W(9) for 0 4 t 4 T

which gives an a priori bound for u(t,.) in L (9) independent of t.

To (20) corresponds the abstract integral equation ..-

(24) u(t) = eAt,(0 ) + ft e-  s  )d s

0 t u

with u0 = T, where the operator A in X = LP(a), I < p < , is defined as in section 2

and

k(ut) = -fr a(s)h(u(t+s))ds , t > 0

For 0 ( t ( T, u is a solution of (24). Let 0 < a < 1. Then by (2), (4)
-a-

lu(t)l 4 C It-aP(O)l + Ca2 sup{Ik(u )I - 0 4 t 4 T}
a alI <p> a2t <p>

for 0 < t 4 T with constants Ci independent of t and 1.1<p> denoting the norm in

LP (fl). But

(25) I U 4 K sup{,(o) I<q> : a C J) for c • C

with 1 4 p, q < , q = kp and the constant K independent of 4. Furthermore, since-J,

u is continuous on [-r,T] x, there is a t0 > 0 such that, say,

ju(t,x)l ' 2(IpN1 + 1) for -r 4 t 4 to , x C 0 -

(Using comparison functions of the form M(1 - Kt)- I with K, M constant, it is easy to

give an explicit positive lower bound for to  in terms of I@ l, cf. (11, Thm. 3.41.)

By (4, Thm. 1.6.1]

(26) D(Aa) C Lp(O) , if - - < 2a - - , 1 <
p 

p
Hence, summing up and using (11), (26) we see that an a priori bound on u(t) in L()

implies an a priori bound on u(t) in

-20-
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C(n7 in case 2q > ml

and in

LP(n) in case 2q ( ml , 1 p P < C-- - ,

q m

both bounds being independent of t.

We start with a bound in L+ 1 (9). If m < 2(1 + A-) this leads to a bound in
C(5) and we are done. If m > 2(1 + -1 ) we get a bound in LO() with p being

arbitrary close to Thus we can choose p > 1+1 if and only if

1+1(27) m < 2 .

Assuming (27) and repeating the above reasoning we get a nondecreasing sequence (p.) of

real numbers with

1< I- ) ' 0 k+1 < k m

such that u(t) is bounded in L (0), uniformly with respect to t. But it is easy to

show that after finitely many steps Pk can be chosen so as to fulfill 2 Pk > mE. In the "-"

next step this leads to the desired a priori bound for u(t) in C(). Hence, using a

cutting-off procedure we can transform (20a) into an equation with globally Lipschitz

continuous nonlinearity, u still being a solution of the transformed equation on its

interval of existence. But then it follows from [11, Thm. 3.1] that u is a global
solution of (20). Moreover, u is bounded and classical for t ) 0. We can thus apply

the results of section 3 to this solution. In view of [3, §141 we arrive at the following

Proposition 11. Assume (21), (23) and (27). Then the boundary value problem (20) has a

unique bounded classical solution u. As t - , this solution converges (uniformly with

respect to x C P) to 0 provided a(s) 9 0 for some s c J, and to a r-periodic

solution of the second order equation z + a(0)h(z) - 0 in case a is linear, a 1 0.

Remarks. (i) If we replace the boundary condition (20b) by u 0 on (0,) x an, then

it follows by the same reasoning as above that for smooth initial values q this boundary

value problem has a unique bounded classical solution u. As t + " this solution

converges to zero, uniformly with respect to x c F. The admissible values of £ and m

-21- .5
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are again given by (27).

(0j.) By essentially the same methods we can also study the asymptotic behavior of solutions

to (20) for more general nonlinearities, In fact, assume that h is an increasing C1

function such that h' has only isolated erros. M4oreover, assum that there are constants

t ;P 0, X~ I with

Ih(z)l Pi p(1 + xz) H 1(Z) > P2 1zlt~1  z e R

where H4(z) fzh(s)ds and P1, p2  positive constants. Then the assertions of

proposition 11 remain true provided we replace condition (27) by m < 2(t+1)/(X-1).

-22-
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